(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

active(f(b, X, c)) → mark(f(X, c, X))
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(X1, mark(X2), X3))
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted CpxTRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(b, z0, c)) → mark(f(z0, c, z0))
active(c) → mark(b)
mark(f(z0, z1, z2)) → active(f(z0, mark(z1), z2))
mark(b) → active(b)
mark(c) → active(c)
f(mark(z0), z1, z2) → f(z0, z1, z2)
f(z0, mark(z1), z2) → f(z0, z1, z2)
f(z0, z1, mark(z2)) → f(z0, z1, z2)
f(active(z0), z1, z2) → f(z0, z1, z2)
f(z0, active(z1), z2) → f(z0, z1, z2)
f(z0, z1, active(z2)) → f(z0, z1, z2)
Tuples:

ACTIVE(f(b, z0, c)) → c1(MARK(f(z0, c, z0)), F(z0, c, z0))
ACTIVE(c) → c2(MARK(b))
MARK(f(z0, z1, z2)) → c3(ACTIVE(f(z0, mark(z1), z2)), F(z0, mark(z1), z2), MARK(z1))
MARK(b) → c4(ACTIVE(b))
MARK(c) → c5(ACTIVE(c))
F(mark(z0), z1, z2) → c6(F(z0, z1, z2))
F(z0, mark(z1), z2) → c7(F(z0, z1, z2))
F(z0, z1, mark(z2)) → c8(F(z0, z1, z2))
F(active(z0), z1, z2) → c9(F(z0, z1, z2))
F(z0, active(z1), z2) → c10(F(z0, z1, z2))
F(z0, z1, active(z2)) → c11(F(z0, z1, z2))
S tuples:

ACTIVE(f(b, z0, c)) → c1(MARK(f(z0, c, z0)), F(z0, c, z0))
ACTIVE(c) → c2(MARK(b))
MARK(f(z0, z1, z2)) → c3(ACTIVE(f(z0, mark(z1), z2)), F(z0, mark(z1), z2), MARK(z1))
MARK(b) → c4(ACTIVE(b))
MARK(c) → c5(ACTIVE(c))
F(mark(z0), z1, z2) → c6(F(z0, z1, z2))
F(z0, mark(z1), z2) → c7(F(z0, z1, z2))
F(z0, z1, mark(z2)) → c8(F(z0, z1, z2))
F(active(z0), z1, z2) → c9(F(z0, z1, z2))
F(z0, active(z1), z2) → c10(F(z0, z1, z2))
F(z0, z1, active(z2)) → c11(F(z0, z1, z2))
K tuples:none
Defined Rule Symbols:

active, mark, f

Defined Pair Symbols:

ACTIVE, MARK, F

Compound Symbols:

c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11

(3) CdtUnreachableProof (EQUIVALENT transformation)

The following tuples could be removed as they are not reachable from basic start terms:

ACTIVE(f(b, z0, c)) → c1(MARK(f(z0, c, z0)), F(z0, c, z0))
MARK(f(z0, z1, z2)) → c3(ACTIVE(f(z0, mark(z1), z2)), F(z0, mark(z1), z2), MARK(z1))
F(mark(z0), z1, z2) → c6(F(z0, z1, z2))
F(z0, mark(z1), z2) → c7(F(z0, z1, z2))
F(z0, z1, mark(z2)) → c8(F(z0, z1, z2))
F(active(z0), z1, z2) → c9(F(z0, z1, z2))
F(z0, active(z1), z2) → c10(F(z0, z1, z2))
F(z0, z1, active(z2)) → c11(F(z0, z1, z2))

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(b, z0, c)) → mark(f(z0, c, z0))
active(c) → mark(b)
mark(f(z0, z1, z2)) → active(f(z0, mark(z1), z2))
mark(b) → active(b)
mark(c) → active(c)
f(mark(z0), z1, z2) → f(z0, z1, z2)
f(z0, mark(z1), z2) → f(z0, z1, z2)
f(z0, z1, mark(z2)) → f(z0, z1, z2)
f(active(z0), z1, z2) → f(z0, z1, z2)
f(z0, active(z1), z2) → f(z0, z1, z2)
f(z0, z1, active(z2)) → f(z0, z1, z2)
Tuples:

ACTIVE(c) → c2(MARK(b))
MARK(b) → c4(ACTIVE(b))
MARK(c) → c5(ACTIVE(c))
S tuples:

ACTIVE(c) → c2(MARK(b))
MARK(b) → c4(ACTIVE(b))
MARK(c) → c5(ACTIVE(c))
K tuples:none
Defined Rule Symbols:

active, mark, f

Defined Pair Symbols:

ACTIVE, MARK

Compound Symbols:

c2, c4, c5

(5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 3 trailing nodes:

MARK(c) → c5(ACTIVE(c))
MARK(b) → c4(ACTIVE(b))
ACTIVE(c) → c2(MARK(b))

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(b, z0, c)) → mark(f(z0, c, z0))
active(c) → mark(b)
mark(f(z0, z1, z2)) → active(f(z0, mark(z1), z2))
mark(b) → active(b)
mark(c) → active(c)
f(mark(z0), z1, z2) → f(z0, z1, z2)
f(z0, mark(z1), z2) → f(z0, z1, z2)
f(z0, z1, mark(z2)) → f(z0, z1, z2)
f(active(z0), z1, z2) → f(z0, z1, z2)
f(z0, active(z1), z2) → f(z0, z1, z2)
f(z0, z1, active(z2)) → f(z0, z1, z2)
Tuples:none
S tuples:none
K tuples:none
Defined Rule Symbols:

active, mark, f

Defined Pair Symbols:none

Compound Symbols:none

(7) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(8) BOUNDS(O(1), O(1))